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Abstract
Background: Because common diseases are caused by complex interactions among many genetic
variants along with environmental risk factors, very large sample sizes are usually needed to detect
such effects in case-control studies. Nevertheless, many genetic variants act in well defined biologic
systems or metabolic pathways. Therefore, a reasonable first step may be to detect the effect of a
group of genetic variants before assessing specific variants.

Methods: We present a simple method for determining approximate sample sizes required to
detect the average joint effect of a group of genetic variants in a case-control study for
multiplicative models.

Results: For a range of reasonable numbers of genetic variants, the sample size requirements for
the test statistic proposed here are generally not larger than those needed for assessing marginal
effects of individual variants and actually decline with increasing number of genetic variants in many
situations considered in the group.

Conclusion: When a significant effect of the group of genetic variants is detected, subsequent
multiple tests could be conducted to detect which individual genetic variants and their
combinations are associated with disease risk. When testing for an effect size in a group of genetic
variants, one can use our global test described in this paper, because the sample size required to
detect an effect size in the group is comparatively small. Our method could be viewed as a
screening tool for assessing groups of genetic variants involved in pathogenesis and etiology of
common complex human diseases.

Background
With the completion of the Human Genome Project and
continuing advances in gene mapping and sequencing
[1], there is an increasing interest in discovery and charac-
terization of thousands of genetic variants as potential risk
factors for common diseases of public health significance
[2]. The search for genetic variants is currently hampered

by numerous challenges, including the sheer number of
genetic variants, the lack of replication of findings in
many observational studies, and study design considera-
tions (such as selection bias and confounding) [2-4].
Because the etiology of most common diseases such as
cancer, heart disease and diabetes is due to complex
genetic and environmental factors, a particular concern in
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the design of epidemiologic studies is the lack of statistical
power to examine the joint effects and statistical interac-
tions of several genetic variants, especially along with
environmental risk factors [2]. For example, even if one
considers that only 10 independent genetic variants are
involved in a particular disease, and assuming simplisti-
cally a dichotomous classification of the susceptible gen-
otype, this leads to more than a 1000 strata in which cases
and controls can be distributed. With another 10 environ-
mental dichotomous factors, we will have more than a
million strata to assess. Note that the issue of multiple
strata may be addressed by utilizing quantitative variables
in the place of dichotomous variables where appropriate.

There have been several suggested methodologies to
reduce the complex interactions of genetic and environ-
mental effects, most notably multi-dimensionality reduc-
tion techniques, or MDR [5]. In the context of screening
for the importance of a biologic system in the etiology of
a specific disease, however, it is often helpful to have an a
priori hypothesis for the genetic effects that belong to a cer-
tain biologic pathway. For example, in studying the etiol-
ogy of venous thrombosis, researchers are examining the
effects of genetic variants involved in the coagulation
pathway [6]. Also, in studying the etiology of neural tube
defects (NTD), because of the protective effects of dietary
folates, researchers are examining the relationship
between genetic variants involved in folate metabolism
and the risk of NTD [7].

In this paper, we present a simple method for assessing
the overall effect of a group of genetic variants in the con-
text of case-control studies. Although post hoc tests have to
be conducted to assess joint effects of combinations of
specific genetic variants, our method enables detection of
the average effect of the group of genetic variants with a
reasonable sample size; it can thus be used as a screening
approach for further study.

Analysis
Mckeown-Eyssen and Thomas [8] explored the relation-
ship between exposure and the differences in case-control
means when the distribution of exposure is continuous.
They derived sample size equations for studies with a con-
tinuous exposure, which allow the investigator to specify
the strength of the relationship between disease and expo-
sure in terms of relative risk. Given the joint distribution
of exposure for controls, Rao [9] derived the joint distri-
bution for the exposure of cases by dividing the product of
the joint distribution of exposure for controls and the risk
function by the sum of this product over all the possible
values that the exposure variable can assume. We used this
method to derive sample size formulas given a joint distri-
bution of k-genetic variants for multiplicative and addi-
tive models. The result of our investigations of
multiplicative models is presented below.

Suppose that the population at risk is exposed to a level Xi

of the ith genetic variant (Xi can assume only 1 or 0

depending on the presence or absence of the ith genetic
variant). Let G1, G2,..., Gk, and R1, R2,..., Rk, be the preva-

lence and the relative risks for the k-genetic variants,
which are assumed to be known. Also, let U1, U2,..., Uk,

denote the exposure variables (Ui can assume only 0 or 1)

among cases for the k-genetic variants. Let  =

( ) be the vector of sample means for con-

trols for the k-genetic variants (assuming the probability

of disease is small) and  = ( ) be the cor-

responding vector of sample means for cases. We assume
equal sample sizes for cases and controls and a multipli-
cative risk model. The test for a difference in mean expo-
sure levels of the group of k-genetic variants is given by:

H0: R1 = R2 = ... = Rk = 1 versus H1: at least one Ri ≠ 1.

For large sample sizes, the simultaneous test for difference
in prevalence between cases and controls is:

where  is the 100(1-α)% probability point of the chi-

square distribution with k degrees of freedom and Σ is the

variance covariance matrices for  (or ) under the null
hypothesis (Appendix A1). Under the alternative hypoth-
esis H1, using a conservative simplification due to Lachin

[10], the distribution of the test statistic has a non-central
chi-squared distribution with k degrees of freedom and

non-centrality parameter δ (i.e. ), where

and

G = (G1, G2,..., Gk) and G* = (G1 *, G2 *,..., Gk*) are the

vectors of prevalence of the k genetic variants for controls
and cases, respectively. If the test is required to have a

specified power (1-β), δ is calculated as the solution to the

equation . The sample size required to

detect a difference in mean exposure for the group of k-

genetic variants with (1-β) power at α level significance is
given by:
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If the null hypothesis, H0, is rejected, one can conduct
subsequent multiple tests to detect which Ris are signifi-
cantly different from 1 or test subsets of Ris using the same
test statistic given above. However, the level of signifi-
cance of each test has to be adjusted based on the number
of multiple tests conducted.

Results
We calculated the sample size required to detect a hypo-
thetical group of k identical genetic variants (all loci are
equivalent having equal effects and are independent). Fig-
ures 1, 2, and 3 give the approximate sample size (number
of cases in 1:1 design) required to achieve 80% power at
5% significance level for detecting mean exposure due to
a hypothetical group of k identical genetic variants when
the prevalence varies from 0.1 to 0.9 and k varies from 1
to 10. Figure 1 corresponds to a risk ratio of 1.25, while
figures 2 and 3 assume risk ratios of 1.5 and 2.0, respec-
tively.

Overall, the sample size requirement declined with
increasing values of k. For example, compared with the
sample size requirement for k = 1 the sample size require-
ment for k = 10 declined by approximately 79% on aver-
age for all prevalence and risk ratios studied. Prevalences
of 0.9 and 0.1 corresponded to the largest sample sizes for
all the risk ratios and numbers of genetic variants in the
group. There was little difference between sample size
requirements for prevalence ranges between 0.3 and 0.6
for large values of k for the given risk ratios. When k is
greater than 4 and R = 2.0, the difference in required sam-

ple size for the range of prevalence from 0.3 to 0.6 was less
than 6 observations. Indicative of this result, the surfaces
shown in all three figures have a relatively flat bottom for
k greater than 4 and for the range of prevalence from 0.3
to 0.6. As expected, the sample size requirement declined
with increasing R. A theoretical explanation of these
results is given below.

Let G be the prevalence in the population of the genetic
variants in the hypothetical group of k identical genetic
variants and G* be the prevalence in cases. We assume

n
G G G G T

=
− − −

2
1
d

( *) ( *)Σ
(1)

Sample size for varying values of K and G (R = 1.25)Figure 1
Sample size for varying values of K and G (R = 1.25). 
Approximate sample sizes required to achieve 80% power at 
5% significance level in detecting the difference in mean 
exposure between cases and controls due to a hypothetical 
group of k identical genetic variants with a risk ratio of 1.25.

Sample size for varying values of K and G (R = 1.50)Figure 2
Sample size for varying values of K and G (R = 1.50). 
Approximate sample sizes required to achieve 80% power at 
5% significance level in detecting the difference in mean 
exposure between cases and controls due to a hypothetical 
group of k identical genetic variants with a risk ratio of 1.50.

Sample size for varying values of K and G (R = 2.0)Figure 3
Sample size for varying values of K and G (R = 2.0). 
Approximate sample sizes required to achieve 80% power at 
5% significance level in detecting the difference in mean 
exposure between cases and controls due to a hypothetical 
group of k identical genetic variants with a risk ratio of 2.0.
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independent genetic variants. The denominator in (1) is
then given by

Let nk be the sample size requirement corresponding to
the group of k genetic variants. Then from (1) and (2),

where δk is the non-centrality parameter of a chi-squared
distribution with k degrees of freedom. This result shows
that for k = 10,

and for any given G and R in the hypothetical group of k
identical variants, the sample size requirement for k = 10
declined by 79.3% compared to the sample size require-
ment for k = 1. In a similar manner, one can show that

The difference between δk+1 and δk declines with increas-

ing k and  approaches 1 for large values of k; hence,

the successive difference between sample size require-
ments declines with increasing values of k.

Example
Yang [11] provided an example of variants at five genes
that have been associated with the risk of colorectal can-
cer. As shown in Table 1, the prevalence of the variants
ranged from 4.0% to 60% and the odds ratios ranged
from 1.35 to 2.67. Although these genetic variants do not
necessarily belong to one biologic system, we use them
here only to illustrate the method. Table 2 gives the sam-
ple size requirements (number of cases in 1:1 case-control
design) to detect the difference in mean exposure of the
group of genetic variants between cases and controls when

the group consists of different combinations of genetic
variants given in Table 1.

GSTT1 and MTHFR have the smallest odds ratios (1.37
and 1.35 respectively) in Table 1 and the largest sample
size requirements (656 and 705 respectively). The higher
sample size for MTHFR reflects the small difference (0.02)
in R, even though the prevalence for MTHFR is greater
than for GSTT1 (0.423 versus 0.376). This shows that
when prevalence is closer to 0.5, the sample size require-
ment is more sensitive to the differences in R. The smallest
sample size (130) corresponds to TNF-α, which has an
odds ratio of 2.02 and a prevalence of 0.392. The largest
odds ratio, 2.67, for HARS1 corresponds to a larger sam-
ple size due to the very low prevalence (0.04).

These results for individual genetic variants seem to carry
over to the group of genetic variants. For example, the
sample size requirement to detect a group of two genetic
variants out of the five given in Table 1, the combination
GSTT1 and MTHFR, corresponds to the largest sample size
(417), and the combination TNF-α and NAT2, which
have odds ratios of 2.02 and 1.68, respectively, corre-
sponds to the smallest sample size (107). For a group of
three genetic variants, the combination HRAS1, GSTT1
and MTHFR corresponds to the largest sample size
requirement (215). These are the three genetic variants
that have the largest sample size requirements when con-
sidered individually. Overall, as seen before, the sample
size requirement declined with the increase in the number
of genetic variants in the group. The sample size require-
ment for all the genetic variants given in Table 1 is 91.

Conclusion
We have presented a simple method for estimating the
sample size for case-control studies required to detect a
group of genetic variants using multiplicative models. We
have also used the same approach for additive risk mod-
els; however, we could not show the asymptotic normality
of the joint distribution of exposure for cases (Appendix
A2).

In the multiplicative model, when the genetic variants are
found to be jointly significant, subsequent multiple tests
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Table 1: Prevalence and odds ratios of five genetic variants for colorectal cancer susceptibility.

Genetic variants Risk group Genotype prevalence% Odds ratio

HRAS1 (1) Rare allele vs. others 4.0 2.67
GSTT1 (2) Null vs. others 37.6 1.37
TNF-  (3) α2 allele vs. others 39.2 2.02
NAT2 [imputed from phenotype] (4) Fast acetylation vs. others [60.3] 1.68
MTHFR (5) Wild-type vs. variant (C677T) 42.3 1.35

(HRAS1 = c-Ha-ras1 proto-oncogene; GSTT1 = glutathione S-transferase theta 1; TNF-  = tumor necrosis factor alpha-chain; NAT2 = N-acetyl 
transferase-2 gene; MTHFR = 5,10-methylenetetrahydrofolate reductase gene.)
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could be conducted to detect which Ris are significantly
different from 1. For example, if the null hypothesis is
rejected for a group of five genetic variants, and R1, R2 and
R5 are significantly different from 1, we can conclude that
the joint effect of G1, G2 and G5 is significantly different
between cases and controls.

Consider k hypothesis tests. Under the null hypothesis
using the Bonferroni inequality, the probability that at
least one of the k tests is significant at level α0 is less than
or equal to α0k. In order to maintain an overall level of
significance α, we would use the significance level α0 = α/
k for each of the k separate tests of significance. Several
less conservative adjustments for multiple tests of signifi-
cance have been proposed, such as the procedure of Holm
[12] and Hochberg [13]. All of these procedures conduct
the multiple tests by ordering the test statistics from larg-
est to smallest and then using less restrictive significance
levels to the second, third, and so on, test conducted.
When any one test is not significant, the procedure stops
and all further tests are also declared non-significant. Ben-
jamin [14] suggested that the False Discovery Rate (FDR)
may be the appropriate error rate to control in many
applied multiple testing problems. The FDR is the
expected proportion of erroneous rejections among all
rejections. A simple procedure was given there as an FDR
controlling procedure for independent test statistics and
was shown to be much more powerful than comparable
procedures that control the traditional family-wise-error-
rate (the probability of erroneously rejecting even one of
the true null hypotheses).

One could have conducted a simultaneous test of the k-
parameter joint null hypothesis using multiple tests dis-
cussed above as an alternative approach to our test. How-
ever, all these tests are conservative compared to the

multivariate test presented here. On the other hand, mul-
tiple comparison tests could be applied in instances in
which the k-statistic vector is not normally distributed,
making these tests suitable for the additive model given in
the Appendix A2.

Garcia-Closas [15] evaluated the influence of common
genetic variation in the NER pathway on bladder cancer
risk by analyzing 22 single nucleotide polymorphisms
(SNP) in seven NER genes (XPC, RAD23B, ERCC1,
ERCC2, ERCC4, ERCC5, and ERCC6). They estimated
odds ratios for each individual polymorphism using logis-
tic regression. They then performed a global test for the
association between genetic variations in NER pathway as
a whole based on the maximum of trend statistics of all
the individual polymorphisms. The P-value for the global
test was computed by the permutation method described
in Westfall [16]. They found significant associations with
SNPs in four of the seven NER genes. They used 1150
cases and an almost equal number of controls. The p-
value for the global test for pathway effects was 0.04. Their
minor allele frequencies ranged from 0.01 to 0.33 and the
odds ratios ranged from 0.8 to 1.4 with an average odds
ratio of 1.2. If the odds ratios and SNP frequencies were
known (assuming an average odds ratio of 1.2 and a dom-
inant model), the sample size required to achieve 80%
power at the 5% level of significance in detecting the over-
all effect of 22 SNPs using our method is 212 cases. In sit-
uations in which we find that none of the genetic variants
were significant, the method described in this paper could
have reduced the cost of the experiment by first screening
the group of genetic variants for overall significance.

The results obtained here can be easily extended to a
group of k genetic variants and l environmental factors,
when the exposure to the ith environmental factor can be
specified as Ei = 1 (present) or Ei = 0 (absent) and the Eis
are independent among themselves and are independent
of the genetic variants.

Our approach is limited by its inability to look at higher
order interactions and the assumption of independence
between all loci. Covariance terms in the variance-covari-
ance matrix could increase the sample size to detect the
group of genetic variants. It is possible that we may not
detect individual effects, but there may be joint effects due
to interactions. Our method cannot detect these interac-
tions. Our sample size is constrained by our assumption
of normal approximation to binomial distribution.
Another limitation is the assumption of multiplicative
effects of genetic variants. True biologic interactions could
be more complex with epistasis and/or other genetic phe-
nomena; furthermore, joint genetic effects and gene-envi-
ronment interactions on risk may be neither additive nor
multiplicative. Unfortunately, for statistical modeling,

Table 2: Sample size requirement to detect mean exposure 
between cases and controls for some combinations of genetic 
variants given in Table 1 assuming multiplicative risk

Genetic variants Sample size Genetic Variant Sample size

(1) HRAS1 283 (4)+(5) 236
(2) GSTT1 656 (1)+(2)+(3) 109
(3) TNF- 130 (1)+(2)+(4) 158
(4) NAT2 265 (1)+(2)+(5) 215
(5) MTHFR 705 (1)+(3)+(4) 93
(1)+(2) 243 (1)+(3)+(5) 110
(1)+(3) 110 (2)+(3)+(4) 107
(1)+(4) 168 (2)+(3)+(5) 181
(1)+(5) 248 (3)+(4)+(5) 108
(2)+(3) 134 (1)+(2)+(3)+(4) 92
(2)+(4) 232 (1)+(2)+(3)+(5) 107
(2)+(5) 417 (2)+(3)+(4)+(5) 106
(3)+(4) 107 (1)+(2)+(3)+(4)+(5) 91
(3)+(5) 135
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epidemiologic analyses have had to deal with multiplica-
tive or additive models. The rare disease assumption in
case-control studies has been discussed in many papers
[17,18]. Generally, since most diseases are infrequent,
ORs are good estimators of relative risks under this "rare
disease assumption". For a disease with a frequency of
10%, which is high, the difference between OR and RR is
still only 10%. The only requirement in our genetic model
is the ability to express exposure due to genotype as 1
(presence of genotype) or 0 (absence of genotype). There-
fore, either dominant or recessive models can be used in
our analysis.

A non-parametric approach to this problem is the method
of Multidimensionality Reduction (MDR), introduced by
Ritchie [5] as a method of reducing the dimensionality of
multilocus information to improve the identification of
polymorphism combinations associated with disease risk.
This data reduction approach seeks to identify combina-
tions of multilocus genotypes and discrete environmental
factors that are associated either with high risk of disease
or low risk of disease, and defines a single variable that
can be divided into high-risk and low-risk combinations.
When it was applied to a sporadic breast cancer case-con-
trol data set, in the absence of statistically significant inde-
pendent main effects, MDR identified a statistically
significant higher-order interaction among four polymor-
phisms from three different estrogen-metabolism genes.
Limitations of MDR include its applicability only to case-
control studies that are balanced, and the difficulty in
interpreting MDR models. Three different strategies for
improving the power of MDR to detect epistasis in imbal-
anced datasets have been evaluated in a recent paper[19].

Another recent approach that holds great promise is logic
regression, introduced by Ruczinski [20] as a tool to detect
interactions between binary predictors that are associated
with a response variable. Logic regression is an adaptive
regression methodology that attempts to construct predic-
tors as Boolean combinations of binary covariates.
According to the authors, logic regression is the only
methodology that searches for Boolean combinations of
predictors in the entire space of such combinations, while
being completely embedded in a regression framework,
where the quality of the model is determined by the
respective objective functions of the regression class.

Suppose there are k genetic variants in a group of genetic
variants and only r of them are associated with the disease.
The prevalence of each of (k-r) genetic variants that are
not associated with the disease (relative risk of each
genetic variant is equal to 1) is identical for cases and con-
trols. Therefore, from equation (1), the sample size
required to detect the k genetic variants is identical to the
sample size required to detect the r genetic variants asso-

ciated with the disease. Since our sample size is a function
of the squares of the difference between prevalence of
genetic variants in cases and controls, our method is valid
even when we have a combination of positively and neg-
atively associated genetic variants.

One advantage of our method is the simultaneous test of
difference of mean exposure instead of multiple testing.
Thus, for a range of reasonable numbers of genetic vari-
ants, the sample size requirement declines with the
increasing number of genetic variants. It is possible that
the sample size required to detect a group of genetic vari-
ants could increase when adding a genetic variant to the
group. However, the sample size required to detect the
group with this genetic variant is still less than the sample
size required to detect the genetic variant alone or to
detect a subset of the genetic variants containing this
genetic variant. When testing for an effect size in a group
of genetic variants, one can use the global test described in
this paper as a screening tool, because the sample size
required to detect an effect size in the group is compara-
tively small. Note that we are comparing the ability to
detect at least one of many genetic variants (global test)
with the power to detect just one, which are different null
hypotheses. If the global test is non-significant, testing for
individual genetic variants that require a large sample size
is not necessary.

More methodological work is needed in this area to detect
joint effects of multiple genetic variants. Our method
could be viewed as a screening tool for assessing groups of
genetic variants involved in pathogenesis and etiology of
common complex human diseases.
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Appendix A1
Let f0(X1, X2,..., Xk) be the joint probability density func-

tion among controls and f1(X1, X2,..., Xk) be the joint

probability density function among cases. If  denotes
controls and D denotes the cases, then

f0(X1, X2,..., Xk) = Pr [(X1, X2,..., Xk)| ] and f1(X1, X2,...,

Xk) = Pr [(X1, X2,..., Xk)| D]

The probability density function of the exposure variables
in the population at risk becomes:

D

D
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f(X1, X2,..., Xk) = f0(X1, X2,..., Xk)Pr( ) + f1(X1, X2,...,

Xk)Pr(D)

Assuming the probability of disease is small, we can
approximate the distribution of the exposures among the
controls by that present among the general population.

f(X1, X2,..., Xk) ≈ f0(X1, X2,..., Xk).

Assuming that the exposure variables corresponding to
the k-genetic variants are independent, the joint distribu-
tion of the k exposure variables is given by

Consider the multiplicative risk model:

where I is the background risk. The average rate of disease
in the population at risk is given by

The summation is over all the possible values each Xi can
assume (0 and 1).

Using (A) and (B), it can be shown that

Yang [11] defined M as the lifetime risk in the population
as a whole of a common disease involving k-genetic vari-
ants for multiplicative models.

If U1, U2,..., Uk, denote the exposure variables (Ui can
assume only 0 or 1) among cases for the k-genetic vari-
ants, their joint probability density function is given by
the product of the risk function and the probability den-
sity function of the exposure variables in the controls
divided by M. Lui [21] derived the joint probability den-
sity function for exposure variables in cases using this
approach when exposure variables have a multivariate

normal distribution. The distribution g of U1, U2,..., Uk is
given by

where .

A comparison of (A) with (C) shows that the joint distri-
bution of exposure among cases has the same form as that
of controls; however, they have different parameters for
prevalence of the genetic variants and the assumption of
independence of exposure variables for controls results in
the independence of exposure variables for cases. The
prevalence of the ith genetic variant among cases is given

by .

The mean exposure levels of the k-genetic variants for con-
trols is given by Gi, for i = 1, 2,..., k. Similarly the mean

exposure levels of the k-genetic variants for cases is given

by  for i = 1, 2,..., k. The test for a difference in mean

exposure levels of the group of k-genetic variants is given
by:

H0: R1 = R2 = ... = Rk = 1 versus H1: at least one Ri ≠ 1.

This test is identical to the test:

H0:Gi =  for i = 1, 2,.., k, versus H1:Gi ≠  for at least

one i (i = 1, 2,.., k).

We assume equal sample sizes for cases and controls. For
a large sample size n (the sample size for controls or

cases), the variance-covariance matrices of  and  are

given by  and  respectively where
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Under the null hypothesis, the variance covariance matri-

ces for  and  are equal and may be written

For large sample sizes, the simultaneous test for difference
in prevalence between cases and controls is:

where  is the 100(1-α)% probability point of the chi-

square distribution with k degrees of freedom.

Appendix A2
Consider the additive risk model:

R(X1, X2,..., Xk) = a0 +a1X1+ a2X2+...+ akXk

where a0 = I and ai = (Ri-1)I.

The average rate of the disease in the population at risk is
given by

where the probability density function, f, is given by (1).

It can be shown that A = a0 +a1G1+ a2G2+...+ akGk.

Using the notations described for multiplicative models,
the probability density function of the exposure levels of
k genetic variants among cases is given by:

This is not an identifiable probability density function.
Although it can be shown that the marginal distributions
have asymptotically normal distributions, this does not
guarantee the asymptotic normality of the joint distribu-
tion.
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